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Abstract—Typical image aesthetics assessment (IAA) is mod-
eled for the generic aesthetics perceived by an “average” user.
However, such generic aesthetics models neglect the fact that
users’ aesthetic preferences vary significantly depending on their
unique preferences. Therefore, it is essential to tackle the issue for
personalized IAA (PIAA). Since PIAA is a typical small sample
learning (SSL) problem, existing PIAA models are usually built
by fine-tuning the well-established generic IAA (GIAA) models,
which are regarded as prior knowledge. Nevertheless, this kind
of prior knowledge based on “average aesthetics” fails to incar-
nate the aesthetic diversity of different people. In order to learn
the shared prior knowledge when different people judge aesthet-
ics, that is, learn how people judge image aesthetics, we propose
a PIAA method based on meta-learning with bilevel gradient
optimization (BLG-PIAA), which is trained using individual aes-
thetic data directly and generalizes to unknown users quickly.
The proposed approach consists of two phases: 1) meta-training
and 2) meta-testing. In meta-training, the aesthetics assessment of
each user is regarded as a task, and the training set of each task
is divided into two sets: 1) support set and 2) query set. Unlike
traditional methods that train a GIAA model based on average
aesthetics, we train an aesthetic meta-learner model by bilevel
gradient updating from the support set to the query set using
many users’ PIAA tasks. In meta-testing, the aesthetic meta-
learner model is fine-tuned using a small amount of aesthetic
data of a target user to obtain the PIAA model. The experi-
mental results show that the proposed method outperforms the
state-of-the-art PIAA metrics, and the learned prior model of
BLG-PIAA can be quickly adapted to unseen PIAA tasks.
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I. INTRODUCTION

THE INBORN capability of perceiving visual aesthetics
is an important aspect of human intelligence. With the

development of artificial intelligence, we expect that machines
can imitate human beings to automatically evaluate the aesthet-
ics of images. Consequently, image aesthetic assessment (IAA)
has become an important research topic due to its widespread
applications [1], such as image recommendation [2], [3]; per-
sonalized photo album management [4]; perceptual image
enhancement [5], [6]; and image retrieval [7], [8]. While
human beings can effortlessly gauge the visual aesthetics of
images, it remains a great challenge for machines these days.

Existing work for IAA mainly focuses on generic IAA
(GIAA) [9]–[17], which infers the common rules of visual
aesthetics perceived by an average user [18], typically as
binary classification [9], [10] or quality prediction [12], [13].
However, it is well known that human cognitive processes are
different among individuals [19]. There is no such thing as
average user in real life [18] and the aesthetic perception of
image are highly subjective [20]. Individual users may have
different aesthetic preferences on the same image, depending
on an individual’s unique personality traits [21]–[23]; emo-
tions [24], [25]; and so on. As an example, Fig. 1 shows
two images and the associated aesthetic scores rated by five
individual users from the FLICKR-AES database [4]. For
comparison, the average aesthetic scores are also shown. As
illustrated in Fig. 1, the average aesthetic score of an image
counteracts individual user’s aesthetic preferences, so it is dif-
ficult to infer the aesthetic perception of an individual user
from the average aesthetics. While generic image aesthetics
has been extensively researched, to learn individual user’s
unique aesthetic preference is still an open problem [20].

The problem of learning individual user’s visual aesthetic
preference is called personalized IAA (PIAA) [4], [26]–[30].
PIAA is a very challenging task since it is difficult to collect a
large amount of annotated images for a specific user, which are
needed to train an effective prediction model. Therefore, PIAA
is a typical small sample learning (SSL) problem [31], which
cannot be modeled directly with conventional deep networks.
The key step for SSL is to find reliable prior knowledge
learned from known tasks that can be exploited for faster learn-
ing over unseen tasks. To address the problem of PIAA, several
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Fig. 1. Example images and the corresponding aesthetic scores rated by five
individual users from the FLICKR-AES database [4]. The aesthetic scores
range from 1 to 5, and the higher score indicates the higher aesthetics. The
blue bar indicates the aesthetic scores rated by five users, and the red bar is
the average aesthetic score.

efforts have been carried out recently [4], [28]–[30]. These
approaches learn an individual’s personalized aesthetic assess-
ment by transferring and adapting the pretrained GIAA model
as prior knowledge. However, they suffer from the following
limitations.

1) The GIAA model learned from the average aesthet-
ics cannot accurately capture the shared aesthetic prior
knowledge when people gauge image aesthetics, since
it simply uses the average score as the training target,
which counteracts the differences of individual aesthetic
perception.

2) The learned GIAA model cannot quickly adapt to unseen
PIAA tasks with only a small number of training
samples.

In view of the aforementioned problems, an effective approach
is to learn an aesthetic prior model with broadly accepted judg-
ments of multiple people [20]. The prior model can fast adapt
to a new PIAA task with a few labeled samples [32], [33].
To this end, extensive individual users’ visual aesthetic rat-
ings should be directly used to learn the aesthetic’s prior
model. Particularly, each individual user’s aesthetic ratings
on images can be considered as a PIAA task, and we can
leverage the few-shot learning (FSL) [34] strategy to learn
the aesthetic prior model. Furthermore, optimization-based
meta-learning [35] is an effective method to refine model
parameters learned from extensive tasks. Hence, we utilize an
optimization-based meta-learning approach to learn a gener-
alized aesthetic prior model that can quickly adapt to unseen
PIAA tasks.

In this article, we introduce a novel personalized aesthet-
ics assessment method based on meta-learning. The proposed
approach leverages the bilevel gradient descent strategy from
extensive PIAA tasks to learn an aesthetic prior model, which
can quickly adapt to a new PIAA task using a small amount
of training samples. The contributions of this article are
summarized as follows.

1) We explore the problem of IAA from the perspective of
individualization. Considering the small sample property
of personalized IAA, we treat the aesthetic evaluation
of each user as an independent PIAA task and leverage
a meta-learning approach to learn the prior knowledge
from extensive PIAA tasks of different users in visual
aesthetic appreciation. The prior knowledge learns the
shared rule of how people judge image aesthetics.

2) We propose a personalized aesthetic assessment
approach with strong expansibility, which can be applied
to any deep regression networks. This approach can
learn the shared aesthetic judgment of different peo-
ple by refining model parameters with explicit gradient
optimization from numerous PIAA tasks.

3) We propose using bilevel gradient optimization to learn
a prior model that has the ability of fast adaptation
for individual users’ aesthetic preferences. The proposed
PIAA method has better generalization performance than
the state-of-the-art methods on several databases.

The remainder of this article is structured as follows.
The related works of PIAA and meta-learning are briefly
introduced in Section II. In Section III, the proposed meta-
learning-based PIAA approach is presented together with the
bilevel gradient optimization strategy. Extensive experimental
results and comparisons are given in Section IV, and finally,
the conclusions are drawn in Section V.

II. RELATED WORK

In this article, we address the problem of PIAA, which
is based on meta-learning. In this section, we give a brief
description of the earlier works related to these two parts.

A. Personalized Image Aesthetics Assessment

Most studies of IAA hold that there are generic rules for
human visual aesthetics [1]. Consequently, IAA is usually
considered as a binary classification [9]–[11] or regression
task [12], [13] to predict high- and low-aesthetic categories,
or to predict an aesthetic score. For example, Tang et al. [9]
proposed extracting multiple regional features in different
ways according to image content for binary aesthetics clas-
sification. Kong et al. [12] proposed learning a ranking model
based on the Siamese network [36] for image aesthetic score
regression. Realizing that people’s aesthetic preferences on the
same image may be different, several works have demonstrated
that predicting image aesthetic distribution is more effective
in describing the diversified aesthetics of images [14]–[17].
Although the aesthetics distribution prediction can reflect the
diversity of human visual aesthetics to a certain extent, it
is still a coarse statistics of people’s aesthetic preferences.
IAA needs to be refined to an individual user level for better
personalized customization [4], [26]–[30]. Lv et al. [26] lever-
aged the ranking model and user interaction to learn users’
personal aesthetic preferences. This approach requires user’s
real-time participation. Wang et al. [27] proposed a collabora-
tive filtering-based approach with user-image textual reviews
for PIAA. This method assumes that there is a considerable
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(a)

(b)

Fig. 2. Illustration of the PIAA approach using the GIAA model based on
average aesthetics as prior knowledge. (a) Network structure of the GIAA
model. (b) Fine-tune the GIAA model to PIAA task.

overlap between the images evaluated by different users, which
may not hold firmly in some applications.

To deal with the SSL problem of PIAA, the approaches
in [4] and [28]–[30] take the GIAA model learned from
the average aesthetic scores of images as prior knowledge
and fine-tuned the GIAA model for the user-specific PIAA
model. Li et al. [28] proposed a personality-assisted multi-
task deep-learning framework that can handle both generic
and personalized IAA. This approach uses the GIAA model as
a prior model, and further leverages the relationship between
users’ personality traits and image preferences to predict users’
personalized image aesthetics. Fig. 2 shows a typical PIAA
pipeline using the average aesthetics-based GIAA model as
prior knowledge. In this pipeline, images and the correspond-
ing average scores are used to train a GIAA model and the
GIAA model is fine-tuned on a few user-specific training sam-
ples for the PIAA task. However, the average score of an image
can hardly embody the aesthetic differences of users, which
makes the GIAA model difficult to adapt to individual users’
aesthetic preferences quickly, so it is not reliable prior knowl-
edge for individual aesthetic perception. Therefore, it is crucial
to acquire shared prior knowledge, namely, the shared rule that
people judge image aesthetics, from different individual users
in the visual aesthetic experience. In contrast to the existing
PIAA approaches, we resort to meta-learning for learning the
shared aesthetic prior knowledge from extensive PIAA tasks.

B. Meta-Learning

Meta-learning is a machine-learning technique [32] to solve
the problem of learning how to learn. Despite the data-driven
deep-learning technique succeeds in many specific tasks (e.g.,
image classification [37], [38] and object detection [39], [40]),
it still lacks the ability to learn from limited samples and
quickly generalize to new tasks. To address this problem, meta-
learning imitates human’s ability to acquire prior knowledge
from extensive learning tasks, which can be quickly adapted
to new tasks. FSL [34] is a typical meta-learning problem
that aims to train an effective learning model from very
few samples. There are three main approaches: 1) recurrent
neural-networks (RNNs) memory-based methods [41], [42];

2) metric-based methods [43], [44]; and 3) optimization-based
methods [35], [45]. The RNN memory-based methods use
RNNs with memories to store experience knowledge from the
previous tasks for learning new task [41], [42]. The metric-
based methods mainly learn an embedding function that maps
the input space to a new embedding space, and leverage
nearest neighbor or linear classifiers for image classifica-
tion [43], [44]. The optimization-based methods aim to learn
the initialization parameters of a model that can quickly learn
new tasks by fine-tuning the model using few training sam-
ples [35], [45]. The essential purpose of these approaches is to
learn prior knowledge among a wide range of learning tasks
for quickly adapting to unseen tasks.

This article is related to the optimization-based meta-
learning methods, which try to learn a model that can rapidly
adapt to new tasks from the previous tasks. Finn et al. [35]
proposed a model-agnostic meta-learning (MAML) approach
to optimize model parameters by updating second-order
stochastic gradient descent (SGD). The computational com-
plexity of the second-order gradient is too high for large-
scale network training. Therefore, a first-order gradient-based
meta-learning method called Reptile was proposed in [45].
Franceschi et al. [46] leveraged a bilevel optimization frame-
work [47] to unify gradient-based optimization and meta-
learning. In this framework, the lower level optimization
denotes the adaptation to a given task and the upper level
optimization represents the training of meta-learner. In this
way, the upper level optimization enables the meta-learner
to learn the cross-task-related information and knowledge on
similar tasks, and the lower level optimization can capture the
specific information on different tasks, making the model more
adaptive for new tasks [48]. However, these works cannot be
directly applied in the proposed PIAA task, because they are
primarily designed for FSL in the classification task, where
the number of training samples in each task is typically less
than 10 [34]. In contrast, the PIAA task requires a continuous
measure of image aesthetic quality, which makes the PIAA
problem different and more complex.

In view of the PIAA task, we adopt a bilevel gradi-
ent optimization method that is different from the previous
approaches. The existing bilevel optimization methods usu-
ally use the upper level optimization to jointly update
the model parameters of different tasks in the lower level
optimization [48]. In contrast, our PIAA approach needs to fur-
ther learn the fast adaptability of model parameters of the same
task in lower level optimization. The difference of the bilevel
optimization between our method and the previous approaches
can be summarized as follows. First, we divide the annotated
data in each user’s PIAA task into two sets for two-level updat-
ing to learn the fast adaptability from one set to another in a
task. Second, we introduce the Adam optimizer [49] into the
meta-training stage of our aesthetic metamodel. Since our aim
is to learn the prior model with the shared aesthetic judgment
of different users, we then learn the shared information and
knowledge among different PIAA tasks during the upper level
optimization. Therefore, a bilevel gradient optimization-based
meta-learning is introduced to learn a better aesthetic prior
model for the PIAA task.
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Fig. 3. Framework of the proposed PIAA method based on meta-learning with bilevel gradient optimization.

III. PROPOSED METHOD

In this section, we propose a PIAA method based on meta-
learning with bilevel gradient optimization. This article uses
meta-learning to seek an aesthetic prior model with people’s
aesthetic judgment from extensive PIAA tasks. In other words,
the prior model tries to learn the shared rule that different
people judge image aesthetics. The aesthetic prior model is
called aesthetic meta-learner. Fig. 3 shows the framework of
the proposed approach, which consists of two phases: 1) meta-
training and 2) meta-testing. In meta-training, we first leverage
a large number of individual users’ PIAA tasks to produce
a meta-training set, which is further divided into two sets:
1) support set and 2) query set. Then, a bilevel gradient descent
method is employed to train an aesthetic meta-learner model
using the support set and query set. In meta-testing, the support
set of an individual user is used to fine-tune the aesthetic meta-
learner network for obtaining the PIAA model. The proposed
approach is called bilevel gradient optimization-based PIAA
(BLG-PIAA).

A. Meta-Training Phase

1) Meta-Learning for Shared Aesthetic Prior Knowledge:
As illustrated in Fig. 1, the prior model based on average
aesthetics may be problematic for PIAA tasks. Consequently,
the most critical issue is how to learn an aesthetic model
that can extract shared prior knowledge from individual aes-
thetic data directly during training. In contrast to the previous
PIAA approaches [4], [28]–[30], we treat the personalized aes-
thetics assessment of each user as a task, producing a large
number of PIAA tasks. Inspired by the idea of meta-learning
for learning to learn [32], we leverage an optimization-based
meta-learning approach to refine model parameters from exten-
sive users’ PIAA tasks. For the PIAA task, it is important
that the learned aesthetic prior model can be easily fine-tuned
with a small number of training samples. Therefore, we use a
bilevel optimization method to learn the shared prior knowl-
edge across different PIAA tasks. In order to learn the ability
of fast adaptation in each PIAA task, the training data of each

PIAA task are further divided into the support set and query
set. The support set is first used to tentatively update the model
parameters, and then the updated model validates whether it is
well performed in the query set. The two-level gradient updat-
ing approach from the support set to query set is called bilevel
gradient optimization.

2) Bilevel Gradient Optimization: We adopt a deep con-
volutional neural network (CNN) that is pretrained on the
ImageNet dataset [37] as our basic backbone and remove the
fully connected layers after the last convolutional layer. Then,
a global average pooling (GAP) operation and two-layer fully
connected neural network are employed as the fully connected
(FC) layers of our deep neural network fθ . Following each FC
layer, dropout and batch normalization (BN) are added to con-
trol overfitting and accelerate the convergence rate of training.
In particular, for an input image x, we fed it into the deep
network to generate the predicted aesthetic score ŷ, which is
defined as

ŷ = fθ (x; θ) (1)

where θ denotes the initialized network parameters. Since
we expect to minimize the difference between the predicted
and ground-truth aesthetic scores of the image x, the squared
Euclidean distance is used as the loss function, which takes
the following form:

L = ‖fθ (x; θ)− y‖22 (2)

where y denotes the ground-truth aesthetic score of the input
image x.

In our PIAA task, we first collect m annotated samples
from each user and divide them into a support set and a
query set, where the support set contains ms samples and the
query set contains mq samples (m = ms + mq). Then, we
denote Dp(τ )

meta-train = {(Dτi
trs

,Dτi
trq

)}Ni=1 as the meta-training set
of PIAA tasks, where Dτi

trs
and Dτi

trq
are the ith support set

and query set of PIAA task, and N is the number of PIAA
tasks. We sample k PIAA tasks as a batch from the meta-
training set (1 < k ≤ N). For the ith support set Dτi

trs
in the
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batch, the loss can be calculated by (2) and denoted as Lτi

(i ∈ {1, 2, . . . , k}). As far as we know, the SGD method can-
not dynamically update the learning rate and easily fall into
the local optimal solution [50]. In order to adaptively learn the
gradient agreement between each step in a task, we leverage
an efficient gradient descent method to optimize the proposed
model. Therefore, we first calculate the first-order gradients
of loss function Lτi relating to all model parameters and it is
defined as

gθ = ∇θLτi(fθ ). (3)

Then, we use the Adam [49] optimizer to update the model
parameters for S steps on the support set Dτi

trs
, which is

formulated as

Adam
(Lτi , θ

)
: θ ′i ← θ − α

S∑

j=1

mθ(j)√
vθ(j) + ε

(4)

where ε = 1e − 8 and α is the inner learning rate. mθ(j) and
vθ(j) are the first moment and second raw moment of gradients,
which are defined as

mθ(j) = μ1mθ(j−1) + (1− μ1)gθ(j) (5)

vθ(j) = μ2vθ(j−1) + (1− μ2)g
2
θ(j) (6)

where mθ(0) = 0 and vθ(0) = 0. μ1 and μ2 are the exponen-
tial decay rates of mθ(j) and vθ(j) , respectively. gθ(j) denotes
the updated gradients in step j (j ∈ {1, 2, . . . , S}). As men-
tioned previously, we expect that the prior model updated with
the support set can perform well on the query set. Different
from [35], we then compute the first-order gradient and update
the model parameters a second time. The model parameters θ ′i
are updated with the Adam optimizer for S steps on the query
set Dτi

trq
(i = 1, 2, . . . , k), which takes the form

Adam
(Lτi , θ

′
i

)
: θi ← θ ′i − α

S∑

j=1

mθ ′(j)√
vθ ′(j) + ε

(7)

where mθ ′(j) and vθ ′(j) are the first moment and second raw
moment of gradients gθ ′(j) , which denotes the updated gradi-
ents in step j (j ∈ {1, 2, . . . , S}). For a batch of k PIAA tasks,
we calculate the gradient agreement of all tasks to update the
model parameters, which is defined as

θ ← θ − β
1

k

k∑

i=1

(θ − θi) (8)

where β is the outer learning rate. In this way, k PIAA tasks
on the meta-training set Dp(τ )

meta-train are sampled iteratively for
model training. Finally, an aesthetic meta-learner model can
be obtained.

B. Meta-Testing Phase

After training the aesthetic meta-learner model from exten-
sive PIAA tasks, we then use this model as prior knowledge
for fine-tuning. Given M images rated by a testing user, we
denote the support set as Dτu

tes
= {xj, yj}Mj=1. We first use the

Algorithm 1 Bilevel Gradient Optimization for PIAA

Input: Meta-training set Dp(τ )
meta−train = {(Dτi

trs
,Dτi

trq
)}Ni=1,

where Dτi
trq

and Dτi
trs

are the ith support set and query set
of PIAA task, and N is the number of PIAA tasks, sup-
port set of a testing user’s PIAA task Dτu

tes
, query image

x, outer learning rate β

Output: Predicted personalized aesthetic score ŷ for x
1: Initialize model parameters θ : pre-trained on Imagenet;
2: /� meta-training phase �/

3: for iteration = 1, 2, ... do
4: Sample a batch of k tasks in Dp(τ )

meta−train;
5: for i = 1, 2, ..., k do
6: /� first level computing �/

7: Compute θ ′i = Adam(Lτi , θ) for S steps on Dτi
trs

;
8: /� second level computing �/

9: Compute θi = Adam(Lτi , θ
′
i ) for S steps on Dτi

trq
;

10: end for
11: update θ ← θ − β 1

k

∑k
i=1(θ − θi);

12: end for
13: /� meta-testing phase �/

14: Update θte = Adam(Lτu , θ) for P epochs on Dτu
tes

;
15: Input x into the updated model fθte ;
16: return ŷ.

squared Euclidean distance as the loss function and calculate
the gradients of model parameters, which are formulated as

Lτu =
1

M

M∑

j=1

∥∥ŷj − yj
∥∥2

2 (9)

gθ = ∇θLτu(fθ ) (10)

where ŷj is the predicted personalized score of the jth image.
Then, we use the Adam optimizer to update the prior model
parameters for P epochs on the support set Dτu

tes
, which is

formulated as

Adam
(Lτu , θ

)
: θte ← θ − αf

P∑

j=1

mθ(j)√
vθ(j) + ε

(11)

where αf is the learning rate of fine-tuning. mθ(j) and vθ(j)

are first moment and second raw moment of gradients
gθ(j) (j ∈ {1, 2, . . . , P}). Finally, the user-specific PIAA model
is obtained for predicting personalized aesthetics of images.
It is worth noting that the training process of our personal-
ized model does not need to learn additional parameters other
than the deep network fθ , which greatly improves the learning
efficiency.

For a query image x, we fed it into the PIAA model fθte

to generate the predicted personalized aesthetics score ŷ =
fθte(x; θte). The whole procedure of our algorithm is outlined
in Algorithm 1.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Settings

1) Databases: We evaluate the effectiveness of the
proposed approach for PIAA on two large-scale databases
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(i.e., FLICKR-AES [4] and AADB [12]) and one small-scale
database (i.e., REAL-CUR [4]). Ren et al. [4] first introduced
FLICKR-AES and REAL-CUR databases with rater’s ID for
PIAA task. Besides, the AADB database [12] also provides
rater’s ID when labeling the aesthetic scores of images.

The FLICKR-AES database [4] includes 40 000 images
downloaded from Flickr, which are rated by a total of 210
workers through AMT. The aesthetic scores range from 1
to 5, and higher score indicates higher aesthetics. In this
database, 35 263 images rated by 173 workers constitute the
training set, and the remaining 4737 images labeled by 37
workers constitute the testing set. The number of images anno-
tated by each testing worker ranges from 105 to 171. For
PIAA tasks, the training set is used for learning an aesthet-
ics model with prior knowledge, and the testing set is used
for learning the personalized aesthetics model of each testing
worker.

The AADB database [12] includes about 10 000 images,
which are rated by a total of 190 workers. For each image, five
workers rated and provided their annotated aesthetic scores
and 11 aesthetic attributes. The 11 attributes are interesting
content, object emphasis, good lighting, color harmony, vivid
color, shallow depth of field, motion blur, rule of thirds, bal-
ancing element, repetition, and symmetry. The aesthetic scores
range from 1 to 5, and the higher score indicates higher aes-
thetics. The AADB database is originally used for evaluating
the performance of GIAA methods. In order to evaluate the
performance of our PIAA method on the AADB database,
we use 22 workers and their rated images as the testing set,
and the remaining 168 workers and the labeled images as the
training set. The number of images annotated by each testing
worker ranges from 110 to 190. We leverage images included
in the training set for learning a prior model and fine-tune it
on the testing set for PIAA tasks.

REAL-CUR [4] includes 14 users’ personal albums and the
corresponding aesthetic scores on their own photo albums. The
aesthetic scores range from 1 to 5. The number of images
in each user’s album ranges from 197 to 222. This small-
scale database can be used to verify the effectiveness of the
aesthetic prior model learned from the training set of large-
scale databases (e.g., FLICKR-AES and AADB) for PIAA
tasks in real-world applications.

2) Implementation Details: Three popular deep-learning
architectures, that is, AlexNet [37], ResNet18 [51], and
Inception-v3 [52], are adopted as our basic CNN layers, which
are pretrained on ImageNet [37]. The two fully connected lay-
ers are randomly initialized. In the proposed approach, the
inner learning rate α of basic CNN layers and fully connected
layers is set as 1e− 4 and 1e− 3, respectively, and the outer
learning rate β is set as 1e−2. The learning rate of fine-tuning
αf is set to 1e− 5. The learning rates drop to a factor of 0.9
after every 100 iterations. In the meta-training phase, the num-
ber of samples in support set ms and query set mq of each task
is set to 80 and 20, respectively. The number of tasks k in a
batch is 4. The step size of learning S is 5 and the epoch of
fine-tuning P is 20. The total iteration of prior model training
is set to 1000. The weight decay is 1e − 5. The exponential
decay rates μ1 and μ2 are set as 0.9 and 0.99. The proposed

method is implemented based on PyTorch [53]. The source
code of our proposed method is publicly available.1

3) Baseline Methods: To evaluate the effectiveness of
our PIAA method based on bilevel gradient optimization
(BLG-PIAA), we compare our approach with three state-of-
the-art methods (i.e., FPMF [54], PAM [4], USAR [26], and
PA_IAA [28]). To further demonstrate the effectiveness of
our approach with bilevel gradient optimization, we further
implement the proposed model using two other optimization
methods [i.e., PIAA(MAML) and PIAA(Reptile)] and a base-
line PIAA method (BA-PIAA) using the GIAA model as prior
knowledge, which have the same network structure as our
BLG-PIAA.

1) FPMF [54] is a collaborative filtering approach to rec-
ommend color aesthetics for individual user and the
testing results in three forms [FPMF (only attribute),
FPMF (only content), and FPMF (content and attribute)]
on the FLICKR-AES database are released in [4].

2) PAM [4] is an active personalized aesthetics model
that leverages image attributes and contents to predict
the residual of individual user’s aesthetic ratings. Three
forms of this approach, PAM (only attribute), PAM (only
content), and PAM (content and attribute), are tested on
the FLICKR-AES database.

3) USAR [26] is a personalized image aesthetic ranking
approach by incorporating individual user’s interaction
for PIAA. Three methods of user’s interaction, including
USAR_PPR, USAR_PAD, and USAR_PPR&PAD, have
been tested on the FLICKR-AES database.

4) PA_IAA [28] is a personality-assisted multitask deep-
learning method that takes advantage of people’s Big-
Five personality traits to predict individual users’ aes-
thetic preferences on images.

5) PIAA(MAML) and PIAA(Reptile) are two versions of
the proposed model by substituting our bilevel gradient
optimization with MAML [35] and Reptile [45], where
the SGD operation is employed to learn the aesthetic
prior model from extensive users’ PIAA tasks and fine-
tuning is conducted on the aesthetic data of a target user
to obtain the PIAA model.

6) BA-PIAA is a baseline PIAA method based on aver-
age aesthetics (see Fig. 2). In this approach, we first
leverage images with the corresponding average scores
to train a GIAA model and then the GIAA model is
fine-tuned on a small number of training data for PIAA
task. During the training and fine-tuning processes, the
Euclidean loss function and the Adam optimizer are also
used to optimize the BA-PIAA model.

4) Evaluation Criteria: For PIAA task, the ranking con-
sistency between predicted and ground-truth results is a very
important evaluation criteria [4], [26], [28]. We employ the
Spearman rank-order correlation coefficient (SROCC) [55] to
evaluate the performance of PIAA approaches. Supposing si

and ŝi denote the ranks of the ith testing image in ground
truth and predicted aesthetic scores, respectively, the differ-
ence between the ground truth and predicted aesthetic scores

1https://github.com/zhuhancheng/BLG-PIAA
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TABLE I
COMPARISON RESULTS (SROCC) OF BA-PIAA, BLG-PIAA, AND THE

STATE-OF-THE-ART METHODS ON FLICKR-AES

is computed as di = si − ŝi, and the SROCC is defined as

SROCC = 1− 6
∑N

i=1 d2
i

N
(
N2 − 1

) (12)

where N is the number of the testing images. If there is
a perfect positive (negative) correlation between si and ŝi

(i = 1, 2, . . . , N), the SROCC equals 1 (−1). Therefore, the
SROCC ranges from −1 to 1, and higher absolute SROCC
value indicates better performance.

B. Performance on the FLICKR-AES Database

Similar to [4], [26], and [28], we also evaluate our approach
on the testing workers on the FLICKR-AES database. For each
worker, the images he or she labeled are randomly divided
into two sets, that is, M images on the support set for training
and the remaining images on the query set for testing. The
experiments are conducted 50 times for each worker to avoid
the bias of randomness, and the averaged results as well as the
standard deviation are reported. To compare with the reported
results of existing PIAA methods in [4], [26], and [28], we
also set M = 10 and M = 100, respectively.

Table I lists the testing results of BA-PIAA, PIAA(MAML),
PIAA(Reptile), BLG-PIAA, and the state-of-the-art meth-
ods for PIAA, and the best results are highlighted in bold
font. In our implementation, ResNet18 is used as the basic
backbone. We can see that BLG-PIAA achieves higher
SROCC values than the state-of-the-art approaches based
on collaborative filtering (FPMF [54]), user’s interaction
(USAR_PPR&PAD [26]), and generic prior aesthetics
(PAM [4] and PA_IAA [28]). Although the proposed BA-
PIAA based on average aesthetics yields very encouraging
performance compared with these PIAA methods, BLG-PIAA
further achieves 3.7% and 8.6% performance improvement
when 10 and 100 images are used for training, respectively.
Besides, our BLG-PIAA model is also significantly better
than the other optimization-based approaches [PIAA(MAML)
and PIAA(Reptile)]. This demonstrates that our meta-learning
approach based on bilevel gradient optimization is very effec-
tive for the PIAA task.

TABLE II
COMPARISON RESULTS (SROCC) OF THE PROPOSED BA-PIAA AND

BLG-PIAA BASED ON THREE BASIC BACKBONES (ALEXNET,
RESNET18, AND INCEPTION-V3) ON FLICKR-AES

For each testing worker, the ability of effectively learn-
ing personalized aesthetic preferences from the aesthetic prior
model is quite important. To verify the generalization abil-
ity of the aesthetic prior model, we first directly use the prior
model of BA-PIAA and BLG-PIAA to compute the prediction
performance of 37 workers, and then further calculate the
testing results of each worker by using the worker-specific per-
sonalized model of BA-PIAA and BLG-PIAA when M = 100.
The prediction performances (SROCC) are shown in Fig. 4.
We can find that the prediction performance of the person-
alized model outperforms a prior model for both BA-PIAA
and BLG-PIAA. Particularly, the average increases of SROCC
values for 37 workers tested on the BA-PIAA model and the
BLG-PIAA model are about 0.079 (from 0.504 to 0.583) and
0.129 (from 0.540 to 0.669), respectively. Compared with BA-
PIAA, BLG-PIAA not only obtains a more effective prior
model (0.540 versus 0.504) but also has better performance
in fast learning personalized aesthetic preferences from the
prior model (0.129 versus 0.079).

To further demonstrate the effectiveness of our BLG-PIAA
model using different network architectures, we compare
BLG-PIAA with BA-PIAA based on three popular backbones
(AlexNet, ResNet18, and Inception-v3) on the FLICKR-AES
database. The testing results are summarized in Table II. As
expected, the proposed BLG-PIAA outperforms BA-PIAA by
a large margin regardless of basic backbone. It is worth noting
that BLG-PIAA and BA-PIAA have the same network param-
eters for each basic backbone. Compared with BA-PIAA,
BLG-PIAA is a more efficient and extensible personalized aes-
thetic assessment method that can improve the performance
without changing the network structure. Furthermore, the
proposed BLG-PIAA methods based on three basic back-
bones all outperform the state-of-the-art PIAA approaches
listed in Table I. This further demonstrates the advantage of
the proposed aesthetic prior model.

C. Performance on AADB and REAL-CUR Databases

As far as we know, no available PIAA method has released
the testing results on AADB and REAL-CUR. To verify the
performance of the proposed method on AADB and REAL-
CUR databases, we compare BLG-PIAA with BA-PIAA based
on ResNet18. For AADB, we use the images on the train-
ing set to train a prior model and randomly select M images
rated by 22 testing workers to fine-tune the prior model. For
the small-scale REAL-CUR database, we leverage the model
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TABLE III
COMPARISON RESULTS (SROCC) OF THE PROPOSED BA-PIAA AND

BLG-PIAA BASED ON RESNET18 ON AADB AND

REAL-CUR DATABASES

TABLE IV
COMPARISON RESULTS (SROCC) OF BLG-PIAA BASED ON RESNET18

WHEN TRAINING AND TESTING ON DIFFERENT DATABASES

learned from the training set on FLICKR-AES as a prior model
and fine-tune it with M randomly selected images from each
album on REAL-CUR. In this experiment, we set M = 10
and M = 100, and the averaged results and the standard devi-
ation of 50 times are reported in Table III. As can be seen, the
performance of BLG-PIAA is significantly better than those
of BA-PIAA on AADB and REAL-CUR databases. In par-
ticular, the proposed method based on meta-learning is more
effective than the one based on average aesthetics in the real-
world IAA of personal albums. This demonstrates that our
BLG-PIAA model can be quickly generalized to the PIAA
tasks of real-world users.

D. Cross Database Evaluation

In practical applications, we expect the learned aesthetic
prior model can quickly adapt to a user’s PIAA model by just
performing fine-tuning on a small amount of aesthetic data.
Therefore, we need to learn the prior model from the training
users in one database and verify its generalization ability to
other testing users in another database. In order to validate the
generalization ability of the learned prior model for the PIAA
tasks of unknown users in different databases, we conduct a
cross database evaluation in this experiment. Particularly, the
BLG-PIAA models based on ResNet18 learned on the train-
ing sets of FLICKR-AES and AADB are fine-tuned across
all the testing sets of three databases. For each PIAA task
on three testing sets, the number of fine-tuned images is 100.
We conduct the experiments 50 times and list the averaged
results in Table IV. For the large-scale databases FLICKR-
AES and AADB, training on one database and testing on the
other database yield the performance that is close to the one
training and testing on the same database. For example, train-
ing on FLICKR-AES and testing on AADB achieve 0.526
ranking correlation, which is close to the performance of train-
ing and testing on AADB (0.545). We note that the model
trained using AADB has better performance when tested on
the FLICKR-AES database. This may be due to the fact
that the testing users on FLICKR-AES provide more accurate

annotated samples for model fine-tuning than those on AADB.
This makes the PIAA tasks of testing users in the AADB
database more difficult to predict than in the FLICKR-AES
database (0.545 versus 0.601). For the small-scale database
REAL-CUR, the BLG-PIAA model trained on FLICKR-AES
outperforms the one trained on AADB, because FLICKR-AES
contains more training images than AADB, which allows that
the BLG-PIAA model trained on FLICKR-AES has better
generalization ability.

E. Parameters Discussion and Analysis

In the meta-training phase of our BLG-PIAA, there are four
key parameters, that is, the number of samples ms and mq in
the support set and query set of each PIAA task and the num-
ber of PIAA tasks k for gradient optimization together and S
to control the learning steps of each PIAA task. In this exper-
iment, the meta-training set can be generated from the PIAA
tasks of 173 training workers on the FLICKR-AES database
and the number of samples in each training worker is set to
100 (m = 100). Then, we set ms, mq, k, and S to differ-
ent values in the meta-training phase and show the averaged
SROCC results of 37 testing workers in Fig. 5. In the meta-
testing phase, the number of fine-tuning images of each testing
workers is 100 (M = 100). Overall, when our metamodel
is trained with two-level gradient updating from the support
set to query set [Fig. 5(b)–(f)], the performance is signifi-
cantly better than that of merging the support set and query
set together [Fig. 5(a)]. This demonstrates the effectiveness
of our bilevel gradient optimization approach for the PIAA
task. Furthermore, when ms = 80 and mq = 20 [Fig. 5(c)],
our method achieves the best overall prediction performance.
As can be seen from Fig. 5(c), with the increase of k and S,
our BLG-PIAA model achieves better prediction performance.
When S increases from 1 to 5, the prediction performance
increases dramatically. When k is larger than 4, the prediction
performance trends to be stable. The parameter k is the number
of PIAA tasks for gradient optimization together. The larger
k leads to the larger batch size of model training, which is
unrealistic when k is too large. Therefore, we set ms = 80,
mq = 20, k = 4, and S = 5 in our experiments.

F. Visual Analysis for Personalized Image Aesthetics

In order to visualize the performance of our method in
PIAA, we randomly select some example images rated by
three testing users from FLICKR-AES, AADB, and REAL-
CUR databases and evaluate them with the personalized model
of BA-PIAA and BLG-PIAA. The number of training images
for model fine-tuning is M = 100 and the testing results are
shown in Fig. 6. From this figure, we can see that the per-
sonalized model of BLG-PIAA predicts the user’s aesthetic
score more accurately than the personalized model of BA-
PIAA. This indicates that BLG-PIAA can learn the aesthetic
characteristics of people better from extensive PIAA tasks and
accurately adapt to the aesthetic preferences of individual users
through a small number of fine-tuning samples.
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Fig. 4. Performance comparison of 37 testing workers on FLICKR-AES by directly using the aesthetic prior model and aesthetic personalized model when
M = 100. The green and yellow bars show the SROCC values using the prior model of BA-PIAA and BLG-PIAA, and the blue and red bars show the
SROCC values using the personalized model of BA-PIAA and BLG-PIAA.

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Influence of parameters ms, mq, k, and S in the meta-training of our
BLG-PIAA on FLICKR-AES measured by SROCC. (a) ms = 100;mq = 0.
(b) ms = 90;mq = 10. (c) ms = 80;mq = 20. (d) ms = 70;mq = 30.
(e) ms = 60;mq = 40. (f) ms = 50;mq = 50.

Since BLG-PIAA is a gradient optimization-based method,
we further leverage a CNN visualization code2 to show the
gradients change in the pixel level of input images in PIAA
tasks. We randomly select some testing images from the

2https://github.com/sar-gupta/convisualize_nb

FLICKR-AES database and use the training data of users who
have rated the images to fine-tune the prior model trained on
the training set of FLICKR-AES. Fig. 7 shows the visualized
gradients at the pixel level (gradient map) computed by the
prior model and three users’ PIAA models. The aesthetic rat-
ings of users are shown below each gradient map. As can
be seen, the gradients of the user’s PIAA model are more
concentrated in salient regions than that of the prior model.
Furthermore, users with different aesthetic ratings on an image
have different areas of interest. This demonstrates that the aes-
thetic prior model can be easily adapted to different users’
unique aesthetic preferences on images. In order to verify the
fast adaptability of the learned prior model, we show the gra-
dient maps of the image (the first row of Fig. 7) during the
fine-tuning of a user’s PIAA task on the prior model in Fig. 8.
As can be seen, our proposed model can capture the user’s
area of interest quite well after only five epochs fine-tuning.
We have done extensive experiments on diversified images for
different users, and have obtained very similar results. This
demonstrates that the learned prior model has the ability of
fast adaptation for the PIAA task.

In order to check whether the proposed model is subject to
overfitting, we conduct experiments on PIAA tasks for all 37
testing users of the FLICKR-AES database and find that the
training loss and testing loss can converge well during fine-
tuning of their PIAA tasks on the prior model. For example, we
show the curves of loss during training and testing versus the
number of epochs in fine-tuning for two different users’ PIAA
models in Fig. 9. For both users, the loss of training and testing
can be quickly reduced to a stable value after about 15 epochs
fine-tuning on the aesthetic prior model. We conclude that our
aesthetic prior model has a strong generalization ability for
the PIAA task, which in turn verifies that our model does not
overfit.

To further verify that the ability of our prior model in cap-
turing the shared rule that people judge image aesthetics, we
conduct a comparative experiment between the PIAA model
fine-tuned from the proposed prior model and the PIAA model
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(a)

(b)

(c)

Fig. 6. Some example images rated by three users from FLICKR-AES, AADB, and REAL-CUR. The aesthetic scores rated by the user and the predicted
personalized aesthetic scores of BA-PIAA and BLG-PIAA are shown below each image. Example images rated by a user from (a) FLICKR-AES, (b) AADB,
and (c) REAL-CUR.

learned directly from users’ respective training data. Fig. 10
shows the gradient maps of the image (input image in the sec-
ond row of Fig. 7) rated by three different users, which are
generated based on the above two PIAA models (first column:
prior model; second column: respective model). The PIAA
model (prior) can be obtained by only 20 epochs fine-tuning
on the proposed prior model, while the PIAA model (respec-
tive) needs at least 50 epochs training. For any of the three
users, the gradient maps of the testing image computed by
these two PIAA models are quite similar. This demonstrates
that our prior model can effectively adapt to different users’
unique aesthetic preferences on images, which in turn demon-
strate that our prior model can capture the shared aesthetic
knowledge of different users.

As observed from Fig. 4, for some users, the proposed
model can only achieve moderate prediction performances.
To analyze the reason why the proposed method cannot work
well for these users, we select one of the testing users from
the FLICKR-AES database for analysis and show the predicted
results of four example images rated by the user. Fig. 11 shows

the user’s ground-truth scores and the predicted scores of BA-
PIAA and BLG-PIAA for these images. From Fig. 11, we
notice that the user rated the same aesthetic score, that is,
3, to different images. This makes it difficult for our model
to learn the user’s unique aesthetic preferences on images. In
addition, our PIAA model is fine-tuned on the meta-learning-
induced prior model with shared aesthetic knowledge. If a
user’s visual aesthetic preferences are significantly different
from the shared aesthetics of the majority of people, the PIAA
model cannot accurately infer the user’s aesthetic perception of
images. Therefore, proposed method relies on users’ unique-
annotated aesthetic data. If a user cannot provide accurate and
diverse-annotated aesthetic ratings on images, the prediction
performance of the user can be compromised.

G. Limitations

While the proposed method has achieved the best
performance when compared to the state of the arts, there
are still some potential limitations. The proposed method still
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Fig. 7. Some testing images rated by different users from FLICKR-AES. The visualized gradients at the pixel level (gradient map) computed by the prior
model and three users’ PIAA models are shown beside each image.

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Testing image in the first row of Fig. 7 and its gradient maps during
the fine-tuning of a user’s PIAA task on the prior model. (a) Input image.
(b) Prior model. (c) After 5 epochs fine-tuning. (d) After 10 epochs fine-
tuning. (e) After 15 epochs fine-tuning. (f) After 20 epochs fine-tuning.

needs user-annotated images for model training, and the num-
ber of annotated images is relatively large, which in turn brings
difficulty in some related practical applications, such as per-
sonalized recommendation systems. Therefore, an ideal PIAA
method needs to reduce the number of user-annotated images,
or even work without using user-annotated data, which can be

(a) (b)

Fig. 9. Loss in training and testing versus the number of epochs in fine-tuning
for two different users’ PIAA models. (a) User 1. (b) User 2.

achieved by making full use of image date related to users
from social networks. In this way, users’ unique aesthetic
preferences on images can be inferred without the need for
aesthetic-annotated data.

Another issue that we have to pay attention to is that,
although our PIAA method can achieve the best performance,
the prediction accuracy is still moderate (from 0.561 to
0.669). This is mainly because that the PIAA problem is
highly subjective and users only provide a small amount of
image aesthetic data, which makes PIAA extremely challeng-
ing. Furthermore, for individual users, the aesthetic rating
of images may be affected by multiple influencing factors
(e.g., personality traits [21], [22] and emotions [24], [25]).
Therefore, in addition to users’ annotated aesthetic data, a
better approach should take into account more diversified fac-
tors that affect users’ aesthetic perception of images. So in
the future work, a very promising direction is to incorporate
diversified factors related to individual users’ image aesthetic
perception into PIAA approaches.
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(a)

(b)

(c)

Fig. 10. Gradient maps of the input image in the second row of Fig. 7
computed by two PIAA models of three different users, where the PIAA model
(prior) represents the model fine-tuned from the prior model and the PIAA
model (respective) denotes the model learned directly from users’ respective
training data. (a) User 1. (b) User 2. (c) User 3.

Fig. 11. Four example images rated by a testing user from the FLICKR-AES
database. The aesthetic scores rated by the user and the predicted personalized
aesthetic scores of BA-PIAA and BLG-PIAA are shown below each image.

V. CONCLUSION

In this article, we have proposed a novel PIAA method
based on meta-learning with bilevel gradient optimization
(BLG-PIAA). Different from the previous PIAA approaches,
we have introduced a meta-learning method to solve the SSL

problem of PIAA. In our approach, the training data of exten-
sive PIAA tasks were split into support sets and query sets
and a bilevel gradient optimization from the support set to
the query set was used to learn an effective aesthetic prior
model. It can capture the shared rule that people judge image
aesthetics and has strong generalization performance for new
PIAA tasks. Experiments conducted on three public databases
have corroborated that BLG-PIAA outperforms the state-of-
the-art PIAA methods. Compared with the baseline approach
BA-PIAA based on average aesthetics, BLG-PIAA has proved
to be more effective in PIAA tasks without additional network
parameters. In addition, experimental results on several basic
backbones have demonstrated that BLG-PIAA is an extensi-
ble approach that can be applied to the most deep regression
networks.
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