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Abstract—Recently, researchers have shown great interest in
using convolutional neural networks (CNNs) for no-reference
image quality assessment (NR-IQA). Due to the lack of big
training data, the efforts of existing metrics in optimizing CNN-
based NR-IQA models remain limited. Furthermore, the diversity
of distortions in images result in the generalization problem
of NR-IQA models when trained with known distortions and
tested on unseen distortions, which is an easy task for human.
Hence, we propose a NR-IQA metric via deep meta-learning,
which is highly generalizable in the face of unseen distortions.
The fundamental idea is to learn the meta-knowledge shared
by human when evaluating the quality of images with diversified
distortions. Specifically, we define NR-IQA of different distortions
as a series of tasks and propose a task selection strategy to build
two task sets, which are characterized by synthetic to synthetic
and synthetic to authentic distortions, respectively. Based on these
two task sets, an optimization-based meta-learning is proposed
to learn the generalized NR-IQA model, which can be directly
used to evaluate the quality of images with unseen distortions.
Extensive experiments demonstrate that our NR-IQA metric
outperforms the state-of-the-arts in terms of both evaluation
performance and generalization ability.

Index Terms—No-reference image quality assessment, gener-
alization ability, optimization-based meta-learning, convolutional
neural networks

I. INTRODUCTION

IN the past few years, the popularity of smart phones and
mobile internet has produced a huge demand for images.

The quality of images is closely related to people’s visual
experience, and it is one of the crucial factors that determine
the usefulness of image information received by humans.
However, images may be polluted in any stage of its life cycle,
including acquisition, compression, storage, and transmission.
Hence, it is necessary to quantitatively measure the degree
of image distortion, which has critical applications in image
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processing systems and computer vision tasks. Although sub-
jective image quality assessment (IQA) can obtain accurate
and reliable results, it is expensive for people to directly rate
image quality and hard to be embedded in real-time systems.
Therefore, objective image quality assessment metrics [1] that
can automatically evaluate image quality has been a long-
lasting research topic in the image processing community,
which has widespread applications in image compression [2],
image restoration [3], [4], virtual reality [5], fingerprint recog-
nition [6], and image quality monitoring systems [7], etc.

According to the availability of a perfect-quality reference
image, the current IQA metrics can be divided into three cat-
egories: full-reference IQA (FR-IQA) [8], reduced-reference
IQA (RR-IQA) [9], and no-reference IQA (NR-IQA) [10].
While the performances of FR-IQA and RR-IQA metrics are
remarkable, reference images are usually hard to obtain in
many application scenarios. Hence, NR-IQA has become the
research focus in the IQA community [11]. Nonetheless, un-
available reference information leads to enormous challenges
for NR-IQA metrics. Therefore, previous NR-IQA metrics are
primarily for specific distortion types, such as ringing effect-
s [12], blur [13], and blocking artifacts [14]. The precondition
of these metrics is that images are distorted by only one
specific type. However, the distortion types of images are often
diverse and unknown in actual situations. Hence, the general-
purpose NR-IQA metric has attracted growing attention from
recent researchers [15], [16], [17], [18], [19], [20], [21]. These
metrics establish a NR-IQA model by using hand-crafted [16]
or learned [19] features to quantify the general rules of image
distortions.

The powerful learning ability of deep learning [22] drives a
large number of NR-IQA metrics based on deep convolutional
neural networks (DCNNs) [23], [24], [25], [26], [27], [28],
[29], [30], [31]. As expected, these metrics are superior to the
traditional hand-crafted feature-based NR-IQA metrics [16],
[17], [18]. This is because that DCNNs have a huge number of
learnable parameters, which can learn the mapping relationship
between images and quality scores more effectively. Therefore,
the effective learning of DCNNs requires big labeled data.
Although developing a large-scale IQA database [32], [33] is
an effective way to improve the performance of learned deep
models, it is often impossible to obtain a large amount of
annotated data when facing a target NR-IQA task in practical
applications [11]. As a result, how to make full use of the
existing small scale and medium scale annotated IQA databas-
es [34], [35] to learn a more generalizable IQA model has
raised increasing concern [10], [27], [28], [29], [30], [31]. To
this end, a straightforward approach [36] is to take advantage
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Fig. 1. An illustration of our motivation. Human have highly generalizable
prior knowledge and can easily evaluate image quality without knowing
the distortion type. Therefore, a generalized NR-IQA model is expected to
learn prior knowledge from images with known distortions and can directly
evaluate the quality of images with unseen distortions. The generalized NR-
IQA model can directly evaluate the quality of images with distortions that
are not encountered during model training, without doing any fine-tuning.

of the model pre-trained on ImageNet [37]. Although this
approach can reduce the over-fitting of the trained NR-IQA
model to some extent, the generalization ability is still quite
limited. This is not hard to understand, because ImageNet is
designed for image classification tasks, which are significantly
different from IQA. Another common practice is to perform
data augmentation by dividing an input image into patches
for training deep NR-IQA model [23]. This is problematic in
that any change in image size may affect its original quality.
Besides, some other works propose to generate large-scale
ranking data [26], [25], or hallucinated reference images [27]
for learning DCNN-based NR-IQA models. These approaches
are effective in learning deep NR-IQA models through data
enhancement with known distortion types, but fail to deal
with the quality evaluation of images with diversified (usually
unseen) distortions. Therefore, the current deep IQA models
are typically subject to the generalization problem, which
could impede their applicability in real-world scenarios.

People have highly generalizable prior knowledge and can
easily evaluate image quality without knowing the exact dis-
tortion type. Therefore, a generalized NR-IQA model should
learn the prior knowledge from images with known distortions
and can directly evaluate the quality of images with unseen
distortions, as illustrated in Fig. 1. To this end, we propose a
new NR-IQA metric via deep meta-learning [38], [39], which
can learn the generalization ability of human in extracting the
underlying rules across diversified distortions. In contrast to
the existing metrics, the proposed NR-IQA model can learn
the shared meta-knowledge of people when evaluating images
with diversified distortions, directly handling the NR-IQA task
of unseen distortions without any model updating or additional
fine-tuning.

This paper extends our previous CVPR paper [10], which
is named Meta-learning based Image Quality Assessment
(MetaIQA). The extensions are multiple folds. First and fore-
most, MetaIQA requires an additional fine-tuning stage using

the target domain data when dealing with new distortions. By
contrast, the proposed metric can evaluate new unseen distor-
tions without doing any model updating or fine-tuning, which
is achieved by significantly improving the meta-optimization
process. Second, we propose a task selection strategy across
distortions to reduce the redundant information of training
samples and improve the generalization performance of our
NR-IQA model. Third, MetaIQA needs to change images to
a fixed size for adapting to the input of deep models, which
leads to the quality change of input images. To deal with this
problem, we propose a deep regression network by introducing
a spatial pyramid pooling (SPP) [40] module that does not
require a fixed input image size, which further improves the
generalization ability of the trained NR-IQA model. Finally,
we perform new Leave-One-Distortion-Out cross-validation on
synthetically distorted IQA databases that can eliminate the
influence of image content for training and testing. Besides,
we provide a more in-depth analysis of the proposed metric
on authentically distorted IQA databases. Visual analysis is
further conducted to illustrate the generalization ability of the
proposed model, which is not provided in the original work.

Therefore, we term the proposed model “MetaIQA+”. Com-
pared to the original MetaIQA, the proposed metric has a
significant improvement in terms of both prediction accuracy
and generalization ability. In summary, the contributions of the
proposed work are as follows.

• We propose a NR-IQA metric via deep meta-learning,
aiming at the generalization problem of applying CNN
to the NR-IQA task. It can effectively build a highly
generalizable NR-IQA model by a cross-distortion meta-
optimization from synthetic to synthetic and synthetic
to authentic distortions, which can directly evaluate the
quality of images with unseen distortions.

• We propose a task selection strategy to select the NR-
IQA tasks with representative synthetic distortions for
the subsequent meta-optimization, which can effectively
reduce the requirement of training data and significantly
improve the generalization ability of the proposed NR-
IQA model.

• We offer two experimental settings for quality evaluation
of synthetic and authentic distortions, respectively. The
experimental results demonstrate that the proposed model
significantly outperforms our previous MetaIQA and the
state-of-the-arts for NR-IQA with unseen distortions.
Besides, the proposed NR-IQA model can be used as
efficient prior knowledge for adapting to new NR-IQA
tasks through fine-tuning.

The remainder of this paper is organized as follows. The
related works on no-reference image quality assessment (NR-
IQA) and deep meta-learning are briefly introduced in Sec-
tion II. In Section III, we present details of the proposed
optimization-based deep meta-learning for NR-IQA. Experi-
mental results and visual analysis are presented in Section IV,
and finally, conclusions are drawn in Section V.
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II. RELATED WORK

A. No-reference Image Quality Assessment

NR-IQA consists of two categories: distortion-specific met-
rics [12], [14], [13] and general-purpose metrics [15], [16],
[17], [18], [19], [20], [21]. For distortion-specific metrics,
image quality is quantified by characterizing the degree of
known distortions. Since the characteristics of distortion types
are known, these metrics have achieved significant evaluation
performance. Nonetheless, the distortion types of images are
often unknown in actual situations, which makes the applica-
tion scope of these metrics is restricted [41]. Consequently,
general-purpose NR-IQA metrics have become the focus of
recent researchers [42].

In general, conventional general-purpose NR-IQA models
are based on hand-crafted features, which can be classified
into two categories: natural scene statistics (NSS)-based met-
rics [17], [15], [16] and learning-based metrics [19], [21]. The
NSS-based metrics find that the statistical characteristics of
natural images vary with the degree of distortions. Moorthy et
al. [15] proposed a NR-IQA metric by extracting the NSS
features from the discrete wavelet transform (DWT) domain
of images. Saad et al. [16] evaluated the quality of images by
using the statistical features from the discrete cosine transform
(DCT) domain. Mittal et al. [17] used NSS features from the
spatial domain to evaluate the quality of images and achieved
very encouraging performance. In addition to the above met-
rics, learning-based metrics have also drawn attention. Ye et
al. [19] proposed a codebook representation approach based
on Support Machine Regression (SVR) model to predict the
quality scores of images. Zhang et al. [21] proposed a NR-IQA
metric by combining the semantic-level features that influence
the human visual system with local features.

Recently, DCNN-based general-purpose NR-IQA metric-
s [23], [24], [25], [26], [27], [28], [29], [30], [31], [36]
have shown better evaluation performance than hand-crafted
feature-based metrics. The challenge of these metrics is that
the effective learning of the deep model requires big labeled
data, but IQA is typically a small sample learning task in
practical applications [11]. In [23], Kang et al. first used CNN
to learn deep features for the NR-IQA task and partitioned
an input image into multiple 32× 32 patches to alleviate the
lack of training samples. But it is counterintuitive that the
quality of a patch used for training is inherited from that of the
corresponding image. Bianco et al. [36] proposed a NR-IQA
metric to fine-tune the pre-trained deep model on the ImageNet
database [37]. Talebi et al. [24] predicted the perceptual
distribution of quality opinion scores through a DCNNs-based
model, whose parameters were also initialized by pre-training
on the large-scale database for image classification tasks [37].
However, the discrepancy between image classification and
NR-IQA restricts the generalization performance of the model.
In [25], [26], the authors leveraged a variety of distortion
types to generate a large number of image pairs to train a
prior model of quality ranking and then fine-tuned the prior
model on several small-scale IQA databases to obtain quality
evaluation models. Zhang et al. [31] proposed two-streams of
pre-trained CNN model for synthetic and authentic distortions,

respectively. Then, a bilinear pooling module was introduced
for fine-tuning on a target NR-IQA task.

Although the above-mentioned metrics can efficaciously
handle the NR-IQA task with known (trained) distortions,
the generalizable ability of these NR-IQA models to unseen
(untrained) distortions is often unsatisfactory. To tackle this
problem, in this paper, we propose a radically different ap-
proach by using deep meta-learning [38] to achieve a highly
generalizable NR-IQA model, which can directly evaluate the
quality of an image with unseen distortion.

B. Deep Meta-learning

Deep meta-learning is a knowledge-driven learning frame-
work, trying to deal with the issue of learning to learn [38].
Humans have a fast learning ability for new tasks, which
largely depends on their prior knowledge learned from related
tasks. Based on this idea, meta-learning is used to imitate
this fast learning ability of humans. Generally, meta-learning
can be classified into Recurrent Neural Networks (RNNs)
memory-based models [43], [44], metric-based models [45],
[46] and optimization-based models [47], [48]. The RNN
memory-based models learn a new task by mainly using RNNs
with memories to store experience knowledge from previous
related tasks [43], [44]. The metric-based models first map
the input space of some related tasks to a new embedding
space by learning an embedding function and then using
the nearest neighbor or linear classifiers to deal with a new
task [45], [46]. The optimization-based models attempt to learn
the initialization parameters of a model that can be quickly
adapted to a new task by fine-tuning with a small number of
training samples [47].

The above meta-learning models are elaborated for few-
shot learning in image classification tasks [39], and each class
usually contains only a few training samples. In contrast,
the NR-IQA model needs to quantitatively predict image
quality, which makes it more difficult and challenging to
obtain training samples. Therefore, we aim to handle an
unseen NR-IQA task directly without any model updating
or fine-tuning. In view of this, we propose a no-reference
image quality assessment metric via optimization-based meta-
learning, which can learn a NR-IQA model with generalizable
prior knowledge. To this end, we conduct meta-optimization
across NR-IQA tasks with diversified distortions and learn a
generalized NR-IQA model that can directly deal with a target
NR-IQA task with unseen distortions.

III. OUR APPROACH

In this section, we model the no-reference image quality
assessment (NR-IQA) task in a deep meta-learning framework,
which is a deep regression network with a spatial pyramid
pooling module. Based on the deep meta-learning framework,
we first generate a series of NR-IQA tasks from synthetically
and authentically distorted IQA databases. Then, we propose
a task selection strategy to build two task sets for the cross-
distortion meta-optimization, enabling the NR-IQA model to
capture the generalization ability from synthetic to synthetic
and synthetic to authentic distortions. Finally, we leverage
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Fig. 2. The overview of our proposed MetaIQA+ framework, which is based on a deep regression network with a spatial pyramid pooling module. MetaIQA+
contains three parts: generating NR-IQA tasks for meta-learning, task selection for building two task sets, and bi-level meta-optimization to learn a generalized
NR-IQA model. Once trained on NR-IQA tasks with known distortions, the proposed MetaIQA+ model can be directly tested on a target NR-IQA task with
unseen distortions.

a bi-level meta-optimization to learn a generalized NR-IQA
model across NR-IQA tasks in each task set. The learned
NR-IQA model can directly test a target IQA task without
model updating. The framework of the proposed model is
illustrated in Fig. 2, which is termed Meta-learning-based IQA
plus (MetaIQA+).

A. Deep Meta-learning Framework

To avoid the change of original image quality caused by
the arbitrary change of input size, a deep regression net-
work fθ implemented with a spatial pyramid pooling (SPP)
module [40] is proposed to build our NR-IQA model. The
deep regression network includes convolutional layers, SPP
layers, and fully-connected layers, as shown on the right side
of Fig. 2. Particularly, the convolutional layers come from a
prevalent DCNN, and the SPP operation on top of the last
convolutional layer is employed for yielding a fully-connected
layer. With the fixed spatial bin size (1 × 1, 2 × 2, 4 × 4),
we make sure that the fully-connected layer gets the fixed
shape input regardless of input image size. Then, another two
fully-connected layers are added to produce the output of the
proposed deep regression network.

Specifically, we fed an image x into the proposed deep
regression network fθ for obtaining the predicted quality score
ŷ, which can be formulated as

ŷ = fθ(x; θ), (1)

where θ represents the initialized parameters of our deep
network. We use the squared Euclidean distance as the loss
function of our model for minimizing the difference between
the ground-truth and predicted quality scores of the image x.
The loss function can be defined as

L = ‖fθ(x; θ)− y‖22, (2)

where y indicates the ground-truth quality score.

B. Generating NR-IQA Tasks

As mentioned in [42], the traditional NR-IQA models are
distortion-aware and usually trained on images with several

common distortions, which can only effectively evaluate the
quality of images with known (trained) distortion types. This
restricts the generalization ability of the traditional NR-IQA
models for images with unseen distortion types. Consequently,
a generalized NR-IQA model should have prior knowledge
learned from known distortions and generalized to unseen
distortions.

Inspired by the concept of learning to learn in deep meta-
learning [38], we could learn the generalization ability of the
deep model from one task to another task during the meta-
optimization process. To learn a generalizable NR-IQA model
from different distortions, we need to generate a series of NR-
IQA tasks that can be used for meta-learning. A NR-IQA
task is an IQA task for a specific distortion type (authentic
distortion is regarded as one distortion type). For images with
synthetic distortions, N NR-IQA tasks for specific distortion
types (e.g., JPEG or blur) can be produced. For images with
authentic distortion, we consider it as the (N +1)-th NR-IQA
task, as shown on the left side of Fig. 2.

C. Task Selection

In real-world applications, since the subjective experiment
of image quality assessment is time-consuming and laborious,
the available types of synthetic distortions that can be used
in our experiment are limited. Therefore, we expect that our
NR-IQA model can be learned from as few known distortions
as possible while ensuring the evaluation performance for
images with unseen distortions. In this way, we can reduce
the requirement of training data and learn a more generalizable
NR-IQA model. For this purpose, it is essential to select the
NR-IQA tasks with representative synthetic distortions for the
subsequent meta-optimization. Inspired by [48], we exploit
a gradient direction similarity approach that measures the
gradient agreement among N NR-IQA tasks with synthetic
distortions.

Suppose Dp(τ) = {Dτ1 ,Dτ2 , ...,DτN } is the set of N NR-
IQA tasks with synthetic distortions. For the i-th task in Dp(τ)
(i ∈ {1, 2, ..., N}), we first compute the gradients of loss
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function LDτi that are related to all network parameters θ
for R times

gi =
R∑
r=1

αse∇θLDτi (fθ), (3)

where αse is the learning rate of selection. Similar to [48],
we then calculate the gradient direction similarity factor wi
between the i-th task and all the other tasks, which can be
defined as

wi =

∑
Dτj∈Dp(τ)(g

T
i gj)∑

Dτh∈Dp(τ) |
∑
Dτj∈Dp(τ)(g

T
h gj)|

. (4)

The higher the wi, the more agreement between the i-th
distortion and all the other distortions. In other words, if the
gradient direction of one distortion is more similar to that of
all other distortions, it means that the distortion has a better
general direction than other distortions. Finally, we rank all
the N kinds of distortions according to the gradient direction
similarity factor W = {wi}Ni=1, which can be defined as

Wrank = sort(W), (5)

where sort(·) is the descending function.
Next, we build two task sets for the subsequent meta-

optimization. First, to achieve the generalization between
synthetic distortions, top n (1 ≤ n ≤ N) NR-IQA tasks
are selected on the basis of Wrank to build a task set DS .
Second, to obtain the generalization from synthetic to authentic
distortions, the NR-IQA task with authentic distortion and the
selected n specific distortion NR-IQA tasks are used to build
another task set DA. In the task set DS , we randomly split
n tasks into a meta-train set Dtr with n − 1 source tasks
and a meta-test set Dte with 1 target task, which simulates
the generalization problem from known synthetic distortion to
unseen synthetic distortion. In the task set DA, we divide the
n tasks with synthetic distortions into meta-train set Dtr and
take the task with authentic distortion as the meta-test set Dte.
The overview of building two task sets is shown in the middle
of Fig. 2. Through the two task sets, the NR-IQA model
is encouraged to learn prior knowledge that can generalize
from known distortions to unseen distortions. In contrast to
MetaIQA [10], the main difference of generated task sets is
to learn the cross-task generalization ability between different
distortion types, so it can obtain better generalization perfor-
mance for NR-IQA tasks with unseen distortions. Different
from previous optimization-based meta-learning, the proposed
metric generates a series of tasks according to distortion types
and aims at learning the generalization ability across different
NR-IQA tasks.

D. Meta-optimization

In our metric, the learned NR-IQA model is expected to
directly evaluate the quality of images with unseen distortions.
Hence, we use a bi-level meta-optimization to learn the
generalization ability of our NR-IQA model. First, we sample
some NR-IQA tasks from the meta-train set to calculate all the
gradients of our NR-IQA model and tentatively update them
with first-level gradient descent. Then, we conduct second-
level gradient descent on the NR-IQA task in the meta-test set

to verify whether the updated model is executed effectively. By
this means, our NR-IQA model can capture the generalization
ability from the tasks in the meta-train set to the tasks in
the meta-test set. The two-level gradient descent strategy
from meta-train set to meta-test set is called bi-level meta-
optimization.

Specifically, we randomly sample k tasks from the meta-
train set and one task in the meta-test as a meta-batch Db =
{Dbtr,Dbte}, where Dbtr = {D1,D2, ...,Dk} is the training
set of meta-batch and Dbte = {Dk+1} is the testing set of
meta-batch (1 ≤ k ≤ n− 1 for DS , and 1 ≤ k ≤ n for DA).
For the i-th task Di in the training set of meta-batch Dbtr, the
loss function can be formulated as LDi (i ∈ {1, 2, . . . , k})
that is computed by Eq. 2. Because our NR-IQA model is
more complex than the model of classification task in [47]
and more training samples are available in each NR-IQA task,
a more effective gradient descent strategy is used to optimize
the proposed model. Hence, we first compute the first-order
gradients of loss function LDi that are related to the parameters
of our model θ, which can be formulated as

gθ = ∇θLDi(fθ). (6)

Then, our model is updated for P times by leveraging the
Adam [49] optimizer on the training set of meta-batch Di(i =
1, 2, ..., k), which can be defined as

θ
′

i ← θ −Gad(LDi ; θ). (7)

The Gad(LDi ; θ) can be calculated by

Gad(LDi ; θ) = α
P∑
j=1

mθ(j)√
vθ(j) + ε

, (8)

where α denotes the inner learning rate and ε = 1e−8. mθ(j)

and vθ(j) denote the first moment and second raw moment of
gradients gθ(j) , which are calculated by

mθ(j) = µ1mθ(j−1) + (1− µ1)gθ(j) , (9)

vθ(j) = µ2vθ(j−1) + (1− µ2)g
2
θ(j) , (10)

where mθ(0) = 0 and vθ(0) = 0. µ1 and µ2 denote the exponen-
tial decay rates of mθ(j) and vθ(j) , respectively. gθ(j) represents
the gradients of the updated model in j-th (j ∈ {1, 2, ..., P})
time.

As we mentioned previously, the proposed NR-IQA model
updated with the meta-train set is expected to perform well on
the meta-test set. Instead computing second-order gradients
in [47], we then calculate the first-order gradients of loss
function LDk+1

that are related to the parameters of updated
model θ

′

i for a second time, which can be defined as

gθ′i
= ∇θ′iLDk+1

(fθ′i
). (11)

We update the model parameters θ
′

i for P times by using Adam
optimizer on the testing set of meta-batch Dk+1 , which takes
the following form

θi ← θ
′

i −Gad(LDk+1
; θ
′

i). (12)
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Fig. 3. The overview of meta-optimization in a meta-batch Db. The meta-
batch consists of a training set with k tasks Dbtr = {D1,D2, ...,Dk} and
a testing set with one task Dbte = {Dk+1}. The gradients of the model is
first calculated on the training set of meta-batch Dbtr . Then, we calculate
the updating gradient of model on the testing set of meta-batch Dbte for the
second time. Finally, the model is updated to a direction that can learn the
generalization ability from the training set to testing set in the meta-batch by
integrating of all gradients.

The Gad(LDk+1
; θ
′

i) can be calculated by

Gad(LDk+1
; θ
′

i) = α
P∑
j=1

m
θ
′(j)
i√v

θ
′(j)
i

+ ε
, (13)

where m
θ
′(j)
i

and v
θ
′(j)
i

represent the first moment and second
raw moment of gradients g

θ
′(j)
i

. For the meta-batch, the
gradients of all tasks are integrated to update the final model
parameters, which can be defined as

θ ← θ − β 1
k

k∑
i=1

(θ − θi), (14)

where β is the outer learning rate. In this way, k tasks are
iteratively sampled from the meta-train set Dtr and one task
in the meta-test set Dte is used to build a meta-batch Db
for optimizing the proposed deep regression network fθ. Ul-
timately, the generalized NR-IQA model learned from known
distortions to unseen distortions can be obtained by the bi-level
meta-optimization.

After training our model through NR-IQA tasks with known
distortions, we can directly use this model to test a target NR-
IQA task u with unseen distortions. For a query image xq in
the target NR-IQA task, the quality score ŷq can be predicted
by using our NR-IQA model ŷq = fθ(xq; θ). The procedure of
our MetaIQA+ is summed up in Algorithm 1 and the overview
of meta-optimization in a meta-batch is illustrated in Fig. 3.

IV. EXPERIMENTS

A. Image Quality Databases

The performance of the proposed NR-IQA model is ver-
ified on two types of databases: synthetically distorted IQA
databases and authentically distorted IQA databases.

Synthetically distorted IQA databases are used to evaluate
the generalization performance of our NR-IQA model for
unseen synthetic distortions, which include TID2013 [35] and

Algorithm 1 The proposed MetaIQA+
Input: N NR-IQA tasks from synthetically distorted IQA

databases and one task from authentically distorted IQA
databases, a query image xq with unseen distortions in the
target NR-IQA task u, learning rate α, β

Output: Predicted quality score ŷq for xq
1: Deep regression network f with initial parameters θ;
2: Select n NR-IQA tasks with representative synthetic dis-

tortions through gradient direction similarity;
3: Build two task sets DS and DA;
4: for iteration = 1, 2, ... do
5: Randomly split DS (or DA) into Dtr and Dte;
6: /? meta-optimization ?/

7: Sample k tasks Dbtr = {D1,D2, ...,Dk} from Dtr and
one task Dbtr = {Dk+1} from Dtr;

8: Build a meta-batch Db = {Dbtr,Dbte};
9: for i = 1, 2, ..., k do

10: /? first-level optimizing ?/

11: Compute θ
′

i = θ −Gad(LDi ; θ) on Di ;
12: /? second-level optimizing ?/

13: Compute θi = θ
′

i −Gad(LDk+1
; θ
′

i) on Dk+1;
14: end for
15: Update θ ← θ − β 1

k

∑k
i=1(θ − θi);

16: end for
17: Input xq into the trained NR-IQA model fθ;
18: return ŷq .

TABLE I
SUMMARY OF SYNTHETICALLY DISTORTED IQA DATABASES RELATING

TO NUMBERS OF REFERENCE IMAGES (REF.), DISTORTION IMAGES
(DIST.), DISTORTION TYPES (DIST. TYPES), AND SCORE RANGE. A

HIGHER SCORE REPRESENTS BETTER QUALITY.

Databases Ref. Dist. Dist. Types Score Range

TID2013 [35] 25 3,000 24 [0, 9]
KADID-10k [50] 81 10,125 25 [1, 5]

KADID-10k [50]. Table I summarizes the information of these
two databases.

Authentically distorted IQA databases can be used to
verify the generalization performance of the learned NR-
IQA model for unseen authentic distortions, which include
CID2013 [51], LIVE in the wild image quality challenge
(LIVE challenge) [41] and KonIQ-10k [52] databases. The
CID2013 database consists of six subsets with a total of 480
authentically distorted images. These images were captured
by 79 digital cameras. Participants were employed in the
user study to rate the quality scores of images that range
from 0 to 100, and a higher score indicates better quality.
The LIVE challenge database consists of 1,162 images with
authentic distortions, such as JPEG compression, overexposure
or underexposure, noise, and motion blur. Therefore, the dis-
tortion types of images are unknown and there are no available
reference images. The quality scores of images were acquired
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TABLE II
COMPARISON RESULTS (SROCC) IN LEAVE-ONE-DISTORTION-OUT CROSS-VALIDATION ON TID2013 AND KADID-10K DATABASES.

TID2013

Dist. type BLIINDS-II [16] BRISQUE [17] ILNIQE [18] CORNIA [19] HOSA [20] WaDIQaM-NR [28] DB-CNN [31] MetaIQA [10] SPP-FT MetaIQA+

AGN 0.6938 0.7582 0.8720 0.3492 0.3431 0.7745 0.7585 0.7334 0.7157 0.8415
ANC 0.6931 0.4670 0.8349 0.0966 0.3178 0.7008 0.8423 0.6352 0.6134 0.6662
SCN 0.8738 0.6246 0.9172 0.6908 0.2731 0.7265 0.7800 0.8197 0.7254 0.7608
MN 0.1908 0.5125 0.5128 0.5062 0.3158 0.5540 0.4501 0.5039 0.5475 0.6131
HFN 0.8162 0.8285 0.8735 0.8482 0.6263 0.7900 0.8192 0.7640 0.8214 0.8808
IN 0.7123 0.1889 0.7751 0.3362 0.0673 0.7308 0.5798 0.6584 0.6215 0.6300
QN 0.6500 0.4145 0.8626 0.4885 0.1331 0.6985 0.7502 0.6808 0.6451 0.7369
GB 0.8962 0.7823 0.7967 0.8923 0.4492 0.7899 0.9015 0.8981 0.8457 0.9183

DEN 0.7692 0.5436 0.7377 0.5597 0.5531 0.6232 0.8103 0.7767 0.7564 0.7962
JPEG 0.8608 0.8318 0.8326 0.8785 0.7686 0.6495 0.8131 0.8582 0.8341 0.8623
JP2K 0.8254 0.5097 0.8417 0.7798 0.4155 0.7168 0.8162 0.8663 0.7891 0.8752
JGTE 0.1892 0.4494 0.2956 0.6931 0.3869 0.3785 0.7023 0.7488 0.7159 0.7898
J2TE 0.6738 0.1405 0.5289 0.2638 0.1700 0.4639 0.6577 0.7035 0.6816 0.7469
NEPN -0.0723 0.2163 -0.0788 0.4108 0.2247 0.2183 0.3774 0.3729 0.3559 0.4224
Block 0.3672 0.3767 -0.1401 -0.0258 0.2869 0.2740 0.4169 0.4930 0.5124 0.6244
MS 0.3038 0.0633 0.1998 0.2077 0.4615 0.3062 0.1023 0.2654 0.3017 0.3634
CTC -0.0569 0.0466 0.0268 0.0800 0.0969 0.3849 0.2946 0.3069 0.3451 0.3973
CCS 0.1338 -0.1390 -0.1720 0.2908 -0.0038 0.4281 0.3423 0.4308 0.4128 0.4457
MGN 0.7054 0.5491 0.6962 0.3516 0.3415 0.7408 0.6700 0.7633 0.7125 0.7855
CN 0.1823 0.3740 0.3621 0.6444 0.1254 0.6971 0.5544 0.6864 0.6483 0.7148

LCNI 0.3477 0.5053 0.8181 0.7623 0.2569 0.5455 0.7600 0.6920 0.6753 0.7397
ICQD 0.5685 0.7936 0.7365 0.7792 0.6562 0.6508 0.7608 0.7836 0.7458 0.7988
CHA 0.7677 0.6657 0.6649 0.8102 0.5877 0.7488 0.7097 0.8016 0.8064 0.8130
SSR 0.6246 0.8273 0.8770 0.8569 0.7254 0.6806 0.7700 0.8015 0.7861 0.8121

Average 0.5299 0.4720 0.5697 0.5230 0.3575 0.5947 0.6433 0.6685 0.6506 0.7098

KADID-10k

GB 0.7637 0.7789 0.8931 0.8426 0.8006 0.8296 0.8378 0.8012 0.7842 0.8412
LB 0.5974 0.6703 0.8555 0.7998 0.6627 0.6924 0.7868 0.7588 0.7831 0.8645
MB 0.3986 0.5093 0.7782 0.4486 0.6004 0.5930 0.6450 0.7815 0.7428 0.7915
CD 0.6075 0.4833 0.6552 0.1001 0.6847 0.7605 0.7851 0.7564 0.7485 0.8064
CS 0.1808 -0.0268 0.0751 0.0393 -0.0048 0.3871 0.6219 0.6134 0.6074 0.6734

ICQD 0.7626 0.7091 0.6736 0.3100 0.6166 0.7616 0.7962 0.6487 0.6411 0.6587
CCS 0.2443 0.1415 0.0454 0.0979 0.1609 0.1222 0.1695 0.2354 0.2249 0.2554

CCS-Lab 0.6208 0.3249 0.6853 0.3511 0.6101 0.7191 0.8184 0.8121 0.7873 0.8211
JP2K 0.4921 0.5342 0.7772 0.3268 0.5695 0.4992 0.7483 0.7804 0.7451 0.8138
JPEG 0.3049 0.7692 0.7989 0.5243 0.5158 0.5078 0.7424 0.7713 0.7498 0.8013
AGN 0.6560 0.5946 0.7595 0.3479 0.6334 0.8533 0.8171 0.7557 0.7394 0.8057
ANC 0.8082 0.5898 0.8602 0.2603 0.7083 0.7771 0.8529 0.8309 0.8109 0.8209

IN 0.3675 -0.1336 0.8213 0.2582 0.2212 0.7916 0.7055 0.7457 0.7149 0.7396
MGN 0.5804 0.5963 0.6786 0.2246 0.5286 0.7397 0.7532 0.7883 0.7547 0.8083
DEN 0.3150 0.1590 0.7399 0.2459 0.2071 0.7221 0.8318 0.7634 0.7341 0.7586

Brighten 0.3473 0.2670 0.2912 0.1999 0.5082 0.6362 0.6291 0.6511 0.6412 0.6617
Darken 0.3037 0.4207 0.4416 0.2498 0.4935 0.2502 0.4925 0.5157 0.5034 0.5471

MS 0.0657 0.2142 0.3154 0.1259 0.4450 0.3090 0.4149 0.5067 0.4876 0.5248
Jitter 0.0390 0.6270 0.4470 0.6521 0.3569 0.7115 0.4889 0.6454 0.6176 0.7245

NEPN 0.2820 0.0372 0.2337 0.2030 0.4051 0.3292 0.3085 0.3852 0.3479 0.3533
Pixelate -0.0168 0.6718 0.5619 0.6123 0.6382 0.6659 0.6265 0.7375 0.7198 0.7889

QN 0.6194 0.7248 0.5714 0.2275 0.6233 0.6881 0.7483 0.7186 0.7018 0.7271
Block 0.0240 -0.0867 0.0066 0.0694 0.3417 0.2232 0.3614 0.3953 0.3715 0.4459

HS -0.0755 0.3988 0.6766 0.2419 0.1780 0.5430 0.4694 0.4264 0.4371 0.4772
CTC 0.0413 0.1374 0.0548 0.0347 0.3892 0.3925 0.3383 0.4463 0.4219 0.4933

Average 0.3732 0.4045 0.5479 0.3118 0.4758 0.5802 0.6316 0.6509 0.6327 0.6802

by crowdsourcing experiments, which range from 0 to 100.
We also include a recently released IQA database: KonIQ-
10k, which is a relatively large-scale consisting of 10,073
authentically distorted images [52]. Each image received five-
point ratings from about 120 workers.

B. Experimental Setup

To verify the generalization performance of our NR-IQA
model for synthetic and authentic distortions, we conduct two
experimental settings, respectively.

1) Experiment I: In the first experiment, we verify whether
the learned NR-IQA model from the task set DS has a
highly generalizable performance for unseen synthetic dis-
tortions. To this end, we conduct Leave-One-Distortion-Out
cross-validation on two synthetically distorted IQA databases:
TID2013 [35] and KADID-10k [50]. Therefore, this experi-
ment does not require the operation of task selection. Different
from the experimental settings in MetaIQA [10], on the basis
of ensuring that distortion types do not overlap, we further
make the image content in training and testing do not overlap.
Specifically, we randomly divide the reference images and the
corresponding distorted images into two subsets with 80% for
training and 20% for testing. Suppose there are M distortions
in each database. The images with M − 1 distortions in the
training set are used as the task set DS , and the images with

left-out one distortion in the test set are used for a target
task u. Our NR-IQA model is learned from the task set DS
through meta-optimization, and then directly used to evaluate
the performance on the target task u without fine-tuning. We
do 10 repeated experiments on the partition of training-testing
to avoid random bias and report the average results of 10 times.

2) Experiment II: In the second experiment, we further
evaluate the proposed NR-IQA model learned from two task
sets DS and DA for unseen authentic distortions. As men-
tioned in Section III-C, we need to use the task selection
operation for determining the number of selected tasks. In
this experiment, we merge images with the same distortion on
TID2013 and KADID-10k databases into one task and obtain
a total of 34 (N = 34) NR-IQA tasks. We train our NR-IQA
model using the selected n tasks with synthetic distortions and
one task with authentic distortion and then directly test it on
a target u with authentic distortion. For the NR-IQA tasks of
CID2013 [51] and LIVE challenge [41], we use the KonIQ-
10k [52] as a task in the meta-test of DA. For the NR-IQA
task of KonIQ-10k [52], we use the LIVE challenge [41] as
a task in the meta-test of DA. In this way, we ensure that
all authentically distorted images in the model test are not
used for model training. To address the problem of nonlinear
alignment of subjective scores in these five IQA databases,
we use a nonlinear module for each database to learn the
nonlinear mapping between predicted scores and subjective
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(a) (b) (c) (d)

Fig. 4. Example images (a)-(d) with the first four distortions according to the Wrank . (a) Lens blur (LB). (b) JPEG compression (JPEG). (c) JPEG2000
compression (JP2K). (d) Gaussian blur (GB).

scores during mixed databases training. Inspired by [53], this
nonlinear module is composed of two linear layers and a
sigmoid activation function (Linear+Sigmoid+Linear).

3) Implementation details and Evaluation criteria: In our
NR-IQA model, we use ResNet18 [22] as the convolutional
layers of the proposed deep regression network. In task selec-
tion, we set the learning rate of selection αse and the number
of selected tasks n to 1e − 4 and 24 respectively. In bi-level
meta-optimization, we set the inner learning rate α and the
outer learning rate β to 1e − 4 and 1e − 2 respectively. The
number of images sampled in a mini-batch is set to 25. All
the learning rates drop down to a factor of 0.9 after every 50
iterations and the total number of iterations is 500. Besides,
we also set the following hyper-parameters: weight decay of
1e − 5, meta-batch size k of 4, the number of learning in
the inner loop P of 5, exponential decay rate µ1 of 0.9,
exponential decay rate µ2 of 0.99. The proposed model is
implemented based on Pytorch [54].

For the NR-IQA task, the ranking and linear consistency
between predicted and ground-truth quality scores are two crit-
ical evaluation criteria. Consequently, we use Spearman Rank
Order Correlation Coefficient (SROCC) and Pearson Linear
Correlation Coefficient (PLCC) to evaluate the performance
of the proposed and several state-of-the-art metrics, which is
similar to [28], [30]. The PLCC and SROCC are in the range
[-1, 1] and higher absolute values represent better evaluation
performance.

C. Performance on synthetically distorted IQA databases

In Experiment I, we compare the proposed MetaIQA+
metric with seven state-of-the-art general-purpose NR-IQA
metrics and our previous MetaIQA [10] on TID2013 [35]
and KADID-10k [50] databases. These metrics are BLIINDS-
II [16], BRISQUE [17], ILNIQE [18], CORNIA [19],
HOSA [20], WaDIQaM-NR [28] and DB-CNN [31]. Besides,
to verify the effectiveness of the proposed meta-optimization,
we also include a baseline model that fine-tunes our deep
regression network implemented with the SPP module by
using the Adam optimizer directly (called SPP-FT). For a
fair comparison, we use the source codes of these metrics
provided by the authors and conduct the experiments under the
same training-testing setting (Leave-One-Distortion-Out cross-
validation).

The comparison results in terms of SROCC are summarized
in Table II, in which we show the best result for each distortion
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Fig. 5. Performance comparisons (SROCC) on the LIVE challenge database
with different top n tasks used for meta-optimization.

type in bold. It can be easily observed from Table II that
the proposed metric is significantly better than other metrics
in terms of overall performance (average results) on both
databases. The proposed model can obtain the best perfor-
mance for more than half of the distortion types (14 out of
24 on TID2013 and 16 out of 25 on KADID-10k). Moreover,
the experimental results also demonstrate that the proposed
MetaIQA+ based on cross-distortion meta-optimization is su-
perior to our previous MetaIQA and the proposed baseline
(SPP-FT). This is mainly because the cross-distortion meta-
optimization in the training process makes the optimized NR-
IQA model obtain the generalizability for unseen distortions
without model fine-tuning.

D. Performance on authentically distorted IQA databases

In Experiment II, we first determine the number of selected
tasks n for meta-optimization (Section IV-D1), then we discuss
the effectiveness of two critical parameters in the meta-
optimization of the proposed NR-IQA model (Section IV-D2),
and finally compare the proposed metric with some state-
of-the-art NR-IQA metrics on CID2013 [51], LIVE chal-
lenge [41] and KonIQ-10k [52] databases (Section IV-D3).

1) Task selection: To demonstrate that our task selection
can effectively select the representative distortion types for
meta-optimization, Fig. 4 shows example images with the
first four distortions according to the Wrank. As shown in
Fig. 4, the first four distortions are all caused by the loss of
high-frequency information in images. Compared with other
distortions in images, the loss of high-frequency information
in images (e.g., LB, JPEG, JP2K, and GB) is a more generally
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Fig. 6. The effectiveness of parameters k and P in the proposed meta-optimization on two authentically distorted IQA databases. (a) LIVE challenge. (b)
KonIQ-10k.

representative distortion type [55]. The NR-IQA model learned
from a small number of representative distortion types can
obtain the general knowledge of distortion and effectively
generalize to the unseen distortions.

Furthermore, different top n tasks (1 ≤ n ≤ 34) and
the task of KonIQ-10k are used to train NR-IQA models,
which are directly tested on the LIVE challenge database. The
performance comparisons in terms of SROCC are shown in
Fig. 5. Since the first four distortions are similar (as shown
in Fig. 4), the performances on the LIVE challenge database
increase slowly when n increases from 1 to 4. The fifth
distortion (Color saturation in LAB space) is quite different
from the first four distortions, which increases the distortion
diversity for model training. Therefore, the performance is
greatly improved when n is from 4 to 5. When n increases
from 5 to 6, the performance slightly decreased. This may be
due to the reasons that the sixth distortion (Color saturation in
HSV space) is similar to the fifth distortion and quite different
from authentic distortion in the LIVE challenge database.
When n is larger than 9, the performances on the LIVE
challenge database tend to be stable. This demonstrates that
the top nine tasks are easier to reach an agreement and the
corresponding distortions have more universally representa-
tive. Also, the SROCC results do not increase continuously
with an increase of n. This demonstrates the necessity of task
selection for meta-optimization in our approach. When n is
24, our model can obtain the best performance on the LIVE
challenge database. Therefore, we set n = 24 in our proposed
MetaIQA+.

2) Parameters discussion: We first discuss the efficacy of
two critical parameters in the proposed meta-optimization, i.e.
k to dominate the number of NR-IQA tasks in a meta-batch
and P to control the number of learning in the inner loop.
Since our NR-IQA model is for authentic distortion, we set k
and P in the proposed meta-optimization to different values
and show the test results (SROCC) on two commonly used
IQA databases (LIVE challenge and KonIQ-10k) in Fig. 6.
Overall, the evaluation performances of our NR-IQA model
improve with the increase of k and P . In the LIVE challenge
database, the evaluation performance starts to deteriorate when
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Fig. 7. The effectiveness of parameter α in the proposed model on the LIVE
challenge and KonIQ-10k databases.

TABLE III
COMPARISON RESULTS (PLCC AND SROCC) OF OUR METRIC WITH
SEVEN STATE-OF-THE-ART NR-IQA METRICS AND OUR PREVIOUS

METAIQA BY DIRECTLY TESTING ON THREE AUTHENTICALLY DISTORTED
IQA DATABASES: CID2013 [51], LIVE CHALLENGE [41] AND

KONIQ-10K [52].

Metrics CID2013 LIVE challenge KonIQ-10k

PLCC SROCC PLCC SROCC PLCC SROCC

BLIINDS-II [16] 0.213 0.124 0.242 0.171 0.108 0.089
BRISQUE [17] 0.536 0.521 0.428 0.400 0.355 0.310
ILNIQE [18] 0.538 0.346 0.589 0.594 0.537 0.501
CORNIA [19] 0.577 0.529 0.543 0.519 0.345 0.315
HOSA [20] 0.588 0.544 0.558 0.522 0.377 0.355

WaDIQaM-NR [28] 0.524 0.512 0.608 0.607 0.689 0.676
DB-CNN [31] 0.834 0.799 0.726 0.713 0.764 0.734

MetaIQA [10] 0.753 0.721 0.743 0.716 0.776 0.747
MetaIQA+ 0.872 0.868 0.767 0.738 0.813 0.775

k is greater than 4. Moreover, the test results (SROCC)
begin to increase slowly when P exceeds 5. In the KonIQ-
10k database, our NR-IQA model can also achieve stable
evaluation performance when k and P are larger than 4 and 5,
respectively. In summary, k and P are set to 4 and 5 in all the
subsequent experiments, respectively. Then, we further discuss
the influence of another key parameter (the inner learning rate
α) on our model. The parameter α is set to different values and
the test results (SROCC) on the LIVE challenge and KonIQ-
10k databases are shown in Fig. 7. As can be seen from the

Authorized licensed use limited to: CHINA UNIVERSITY OF MINING AND TECHNOLOGY. Downloaded on April 16,2021 at 09:09:28 UTC from IEEE Xplore.  Restrictions apply. 



1051-8215 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2021.3073410, IEEE
Transactions on Circuits and Systems for Video Technology

10

TABLE IV
COMPARISON RESULTS (PLCC AND SROCC) OF OUR METRIC WITH
FIFTEEN STATE-OF-THE-ART NR-IQA METRICS AND OUR PREVIOUS

METAIQA BY FINE-TUNING ON THREE AUTHENTICALLY DISTORTED IQA
DATABASES: CID2013 [51], LIVE CHALLENGE [41] AND

KONIQ-10K [52].

Metrics CID2013 LIVE challenge KonIQ-10k

PLCC SROCC PLCC SROCC PLCC SROCC

BLIINDS-II [16] 0.565 0.487 0.507 0.463 0.615 0.529
BRISQUE [17] 0.648 0.615 0.645 0.607 0.537 0.473
ILNIQE [18] 0.538 0.346 0.589 0.594 0.537 0.501
CORNIA [19] 0.680 0.624 0.662 0.618 0.795 0.780
HOSA [20] 0.685 0.663 0.678 0.659 0.813 0.805

deepIQA [56] / / 0.482 0.493 0.606 0.604
BIECON [57] 0.620 0.606 0.613 0.595 / /
dipIQ [26] 0.709 0.702 0.290 0.187 0.437 0.228
MEON [29] 0.703 0.701 0.693 0.688 / /
DistNet-Q3 [58] / / 0.601 0.570 0.710 0.702
DeepFL-IQA [33] / / 0.769 0.734 0.887 0.877
DIQA [59] 0.720 0.708 0.704 0.703 / /
NSSADNN [30] 0.825 0.748 0.813 0.745 / /
WaDIQaM-NR [28] 0.729 0.708 0.680 0.671 0.761 0.739
DB-CNN [31] 0.871 0.863 0.869 0.851 0.869 0.856

MetaIQA [10] 0.784 0.766 0.835 0.802 0.887 0.850
MetaIQA+ 0.891 0.882 0.872 0.852 0.921 0.909

figure, our NR-IQA model can achieve the best evaluation
performance in both databases when α = 1e − 4. Therefore,
α is set to 1e− 4 in our experiments.

3) Comparisons with the state-of-the-art NR-IQA metrics:
To examine the generalizable performance of our NR-IQA
model, we compare the proposed metric with seven state-
of-the-art general-purpose NR-IQA metrics and our previous
MetaIQA on CID2013 [51], LIVE challenge [41] and KonIQ-
10k [52] databases. All these metrics are tested under the
settings of Experiment II, and the directly tested results on
all images of the three databases are listed in Table III,
where the best results among the NR-IQA metrics for each
database are shown boldfaced. From the results in Table III,
we can conclude that our MetaIQA+ model can obtain the
best performance through direct testing on the authentically
distorted IQA databases. In particular, the proposed MetaIQA+
is significantly superior to MetaIQA on the CID2013 database.
The reasons may be that the size of images in the database
is larger than the other two databases, and our NR-IQA
model with SPP module can greatly improve the evaluation
performance by inputting images with original size. This
demonstrates that the proposed MetaIQA+ model has better
generalization ability for unseen authentic distortions.

To further verify the adaptability of our NR-IQA model,
we also fine-tune it on the three authentically distorted IQA
databases and compare it with more state-of-the-art NR-IQA
metrics and our previous MetaIQA. For a fair comparison
with the reported results of existing NR-IQA metrics, we
do the same training-testing setting as [28], [30]. In the
CID2013 database, we use four out of six subsets as training
samples and the remaining two subsets as testing samples. In
LIVE challenge or KonIQ-10k database, we randomly split all
images into 80% training samples and 20% testing samples.
Specifically, we use the training samples of each database
to fine-tune our meta-optimized MetaIQA+ model, which
will further promote the evaluation performance of the test
samples. In the fine-tuning procedure, the squared Euclidean

TABLE V
ABLATION STUDY RESULTS (PLCC AND SROCC) ON THREE

AUTHENTICALLY DISTORTED IQA DATABASES: CID2013 [51], LIVE
CHALLENGE [41] AND KONIQ-10K [52].

Metrics CID2013 LIVE challenge KonIQ-10k

PLCC SROCC PLCC SROCC PLCC SROCC

ResNet-FT 0.716 0.701 0.721 0.703 0.768 0.737
SPP-FT 0.810 0.799 0.744 0.713 0.782 0.753
MetaIQA+ 0.872 0.868 0.767 0.738 0.813 0.775

distance between the ground-truth and predicted quality scores
of training samples is used as the loss function to optimize
our NR-IQA model. After using the training samples of each
database for fine-tuning, a new NR-IQA model can be obtained
for evaluating the quality of the test samples.

We do 10 repeated experiments on the partition of training-
testing to avoid random bias and summarize the average results
of the three databases in Table IV. Since KonIQ-10k is a
recently released database and CID2013 is relatively small,
several DCNN-based NR-IQA metrics have not released their
testing results on the two databases. We can see that our
metric is superior to the state-of-the-arts on CID2013 and
KonIQ-10k databases. MetaIQA+ has obtained slightly better
performance than DB-CNN on the LIVE challenge database,
which outperforms other NR-IQA metrics by a large margin.
This demonstrates that our NR-IQA model based on deep
meta-learning can also be used as an effective prior model
for adapting to NR-IQA tasks with authentic distortions.

4) Ablation study: To further examine whether the advan-
tage of MetaIQA+ is achieved from the proposed deep regres-
sion network or the optimization-based meta-learning, we also
conduct ablation studies. We compare MetaIQA+ with two
baseline metrics: fine-tuning the ResNet18 [22] (the last layer
replaced with regression prediction) pre-trained on ImageNet
by using the Adam optimizer directly (called ResNet-FT),
fine-tuning the proposed deep regression network implemented
with the SPP module by using the Adam optimizer directly
(called SPP-FT).

The testing results on CID2013 [51], LIVE challenge [41]
and KonIQ-10k [52] databases are listed in Table V. As
can be seen in this table, the proposed MetaIQA+ metric
is significantly better than the two baseline metrics on all
these databases. From the comparison results of ResNet-
FT and SPP-FT, it is known that our network implemented
with the SPP module can effectively improve the evaluation
performance. Besides, SPP-FT and MetaIQA+ have the same
network structure but are optimized by two different approach-
es. Compared with SPP-FT, MetaIQA+ has superior evaluation
performance and can promote the performance of the NR-IQA
model without changing the network structure. This indicates
that both meta-optimization and SPP module have significant
contributions to the proposed NR-IQA model.

E. Visual Analysis

To validate the effectiveness of our IQA model for learning
prior knowledge from different distortions, we conduct a
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Fig. 8. The t-SNE 2D scatter plots of deep features extracted by three models on the merged database based on TID2013 and KADID-10k with 24 selected
distortions: (a) The model trained by using a single distortion type, respectively; (b) The model trained by directly using all distortion types; (c) The proposed
model based on meta-learning.

visual experiment by using the t-distributed stochastic neigh-
bor embedding (t-SNE) algorithm [60]. Particularly, t-SNE is
used to visualize the deep features of images with different
distortion types, which come from the penultimate layer of
our deep regression network fθ optimized by three learning
metrics. The first one is to train the network by using a single
distortion type, respectively. The second one is to train a
model by directly using multiple distortion types (called Multi-
distortion model). The last one is our model based on deep
meta-learning (MetaIQA+). The visualization is plotted on the
merged database based on TID2013 and KADID-10k with 24
shared distortions. It’s worth noting that the three models are
all trained on the same deep regression network.

The t-SNE 2D scatter plots of deep features extracted by
three models are shown in Fig. 8, where different colors
represent different distortion types and each point represents
an image. As can be seen, the clusters of different distortion
types are naturally separated in Fig. 8(a). This indicates that
there are huge differences among the NR-IQA models trained
with diverse distortions. When the Multi-distortion model is
trained by directly using all 24 distortion types, the clusters of
different distortion types begin to mix in Fig. 8(b). However,
there still exist some distortions that are clustered separately.
In Fig. 8(c), all the distortion types are better mixed together
compared with Fig. 8(b). This shows that the shared prior
knowledge of varied distortions in images can be efficaciously
captured through our MetaIQA+ model.

To quantitatively verify the generalization performance of
the Multi-distortion model and MetaIQA+, we use different
amounts of distortion to train these two models and plot
the t-SNE scatter of models for 24 distortions. Then, the
average distance of 24 distortions can be measured by the
average result of the minimum distance from any dot of
each distortion to points from the other distortions in t-SNE
scatter plots. The average distance indicates the degree of
dispersion in t-SNE scatter plots. The smaller the dispersion of
the scattered points, the better the generalization performance
of models for distortions. Fig. 9 shows the average distance
of these two models for 24 distortions versus the number of
distortions used in the training procedure. From the figure,
the average distance of MetaIQA+ decreases faster than that
of the Multi-distortion model when increasing the number
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Fig. 9. The average distance of the Multi-distortion model and MetaIQA+ for
24 distortions versus the number of distortions used in the training procedure.

of distortions. This indicates that the t-SNE scatter plots of
MetaIQA+ are more concentrated than the Multi-distortion
model, which further proves that our MetaIQA+ model has
a highly generalizable ability for unseen distortions.

V. CONCLUSION

In this paper, we propose a novel optimization-based deep
meta-learning approach to address the generalization problem
of NR-IQA. The proposed deep regression network with
spatial pyramid pooling can effectively extract the features of
the original image for quality evaluation. Since the proposed
metric can capture the shared prior knowledge from a series
of known distortions like human, the learned NR-IQA model
can directly evaluate the quality of an image with unseen
distortions. Also, we exploit a task selection approach based on
gradient direction similarity to further reduce the requirement
of training samples and improve the generalization ability
of our NR-IQA model. Two experiments conducted on five
public IQA databases have shown that the proposed metric
outperforms the state-of-the-art NR-IQA metrics in terms of
both evaluation accuracy and generalization ability. Besides,
MetaIQA+ can also be used as an efficient prior model for
adapting to NR-IQA tasks with authentic distortions, which
will enlighten the design of NR-IQA models in future real-
world applications.
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